Plenary IIA: Alternative Fuel Cycles and Fuel Supply

- CANDU Fuel Cycle Flexibility
- Uranium Supply and Market Update
- DOE Activities Promoting Understanding Patricia Paviet (USDOE) of Advanced Nuclear Fuel Cycles
- Recycling and Advanced Fuel Cycles at Areva

Jarret Adams

Sermet Kuran (Candu Energy Inc.)

Derek Gross (Cameco Corporation)

• Q&A

CANDU Fuel Cycle Flexibility

- Alternative Fuels in Operational CANDU Reactors (NUE)

- Alternative Fuels in New Build CANDU Reactors (AFCR)

Dr. Sermet Kuran Candu Energy Inc.

PBNC 2014 August 26, 2014 Vancouver BC

Alternative Fuels in CANDU Reactors (NUE)

CANDU and Natural Uranium

CANDU and Alternative Fuels

- -RU/DU, RU, LEU, Th and MOX
- -Significant availability of alternative resources

CANDU differentiators in Fuel Cycles

- -Thermalized Core/Fuel Efficiency/Uranium Utilization
- -On-power fuelling
- -Simple Fuel bundle
- -Flexible reactor design enabling multiple fuel use

Alternative Fuel in <u>Operational</u> CANDU Reactors (NUE)

- Objective; Clear proof of CANDU fuel cycle capability
- A fuel behaving similarly to NU
 - -NUE= a mixture of RU and DU
 - -No need for enrichment
 - -No supply restraints
 - ~50,000 tons in stock, ~4000tons/year production (RU)
 - 1.2-1.3 million tons of DU in stock
 - -Simple to mix and manufacture pellets
 - -Use existing bundle design, minimal manufacturing impact
 - -Stay within the existing licensing case and operational envelope
 - -Fast paced
 - –Partnership based;
 - reactor designer, reactor utility, research organization(s) and fuel manufacturer

Alternative Fuel in <u>Operational</u> CANDU Reactors (NUE)

- Short term project
 - Concept, Analysis, Design, Development & licensing case for testing
 - Manufacturing and two channel testing in Qinshan C6 units
 - Full core analysis and licensing case
 - Full core Regulatory review (in progress)
 - Expected start of Qinshan full core NUE conversion, first half of 2015
- RU and DU back into the fuel cycle
- No long term RU/DU storage costs
- No need for fresh natural uranium
- ~Four LWRs feed one CANDU, synergy between reactor technologies
- Reduced fuel cost
- NUE can be used in all CANDU type reactors as NU replacement
- First of a kind in CANDU and clear proof of fuel flexibility, first step in a productive path

18 months 14 months 24 months 9 to 12 months

Alternative Fuels in <u>New Build</u> CANDU Reactors (Advanced Fuel CANDU Reactor—AFCR)

• What is the AFCR

- Based on the success and proof of NUE
- A successful joint Candu Energy and CNNC design collaboration
- Use high burn up RU and Th based fuels in a CANDU type new build reactor
 - Even higher uranium utilization
- Effective use of indigenous resources
- Use fuel cycle advantages to further design margins
- Use C6/EC6 type reactor design to minimize delivery risk and ensure provenness
- -Start with RU then convert to Th-LEU use without hardware change
- Ensure a Gen III design meeting all new safety and post-Fukushima requirements
- Complete detailed conceptual design within a period of 26 months
- -Ready for review in China before the end of 2014
- First unit can be in-service 2023

Alternative Fuels in <u>New Build</u> CANDU Reactors (Advanced Fuel CANDU Reactor—AFCR)

The two fuels focused on;

- Reuse of LWR fuel stream (RU)
- Introducing new, alternative resources (Th)
- Recycled Uranium Fuel (reactor to be started with this fuel)
 - 10 MWd/kgHE
 - No enrichment required, direct use of RU
 - 0.95 wt% fissile content
 - Proven 43-element CANFLEX fuel bundle
 - Logical next step to NUE fuel
- LEU-Th fuel
 - 20 MWd/kgHE
 - CANFLEX fuel bundle
 - 8 centre elements contain Th
 - Commercial verification tests in AFCR
 - AFCR converted to LEU-Th as per owner's timing
 - Lowest risk approach and rapid/practical commercial reactor based solution

NUE and AFCR — Progress and Timelines

Advanced Fuel Technology & AFCR Project Roadmap

CANDU Fuel Cycle Flexibility—The Whole Picture

Alternative Fuels in Operational and New CANDU Reactors—Conclusions

- Candu Energy has alternative fuels available for all operational and future CANDU units
- Highest uranium and other fuel utilization
- An evolutionary low risk, step by step implementation path is adopted in association with partners
- Each step will bring CANDU closer to "closed fuel cycles"
- Effective, simple low cost use of RU
- Start the Th cycle in a low risk manner
- Recycle Th; reduce spent fuel volume and the need for new fuel material
- Gradually approach "closed cycles"
- Synergy with other reactor technologies is considered to be a common benefit to the industry
- Advanced Fuel Cycle Reactor AFCR is now ready for review & implementation
- Candu Energy approach is a step by step progress in fuel cycles.

